skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Srivastava, Prakhar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Denoising diffusion probabilistic models are a promising new class of generative models that mark a milestone in high-quality image generation. This paper showcases their ability to sequentially generate video, surpassing prior methods in perceptual and probabilistic forecasting metrics. We propose an autoregressive, end-to-end optimized video diffusion model inspired by recent advances in neural video compression. The model successively generates future frames by correcting a deterministic next-frame prediction using a stochastic residual generated by an inverse diffusion process. We compare this approach against six baselines on four datasets involving natural and simulation-based videos. We find significant improvements in terms of perceptual quality and probabilistic frame forecasting ability for all datasets. 
    more » « less
  2. Abstract Global storm-resolving models (GSRMs) have gained widespread interest because of the unprecedented detail with which they resolve the global climate. However, it remains difficult to quantify objective differences in how GSRMs resolve complex atmospheric formations. This lack of comprehensive tools for comparing model similarities is a problem in many disparate fields that involve simulation tools for complex data. To address this challenge we develop methods to estimate distributional distances based on both nonlinear dimensionality reduction and vector quantization. Our approach automatically learns physically meaningful notions of similarity from low-dimensional latent data representations that the different models produce. This enables an intercomparison of nine GSRMs based on their high-dimensional simulation data (2D vertical velocity snapshots) and reveals that only six are similar in their representation of atmospheric dynamics. Furthermore, we uncover signatures of the convective response to global warming in a fully unsupervised way. Our study provides a path toward evaluating future high-resolution simulation data more objectively. 
    more » « less